Pipeline efficiency | GitLab (2024)

  • Identify bottlenecks and common failures
  • Pipeline analysis
    • Pipeline Insights
    • Directed Acyclic Graphs (DAG) visualization
    • Pipeline Monitoring
      • Runner monitoring
      • Dashboards and incident management
    • Storage usage
  • Pipeline configuration
    • Reduce how often jobs run
    • Fail fast
    • Directed Acyclic Graphs (DAG)
    • Caching
    • Docker Images
      • Optimize Docker images
  • Test, document, and learn
    • Related topics

Tier: Free, Premium, UltimateOffering: GitLab.com, Self-managed, GitLab Dedicated

CI/CD Pipelines are the fundamental building blocks for GitLab CI/CD.Making pipelines more efficient helps you save developer time, which:

  • Speeds up your DevOps processes
  • Reduces costs
  • Shortens the development feedback loop

It’s common that new teams or projects start with slow and inefficient pipelines,and improve their configuration over time through trial and error. A better process isto use pipeline features that improve efficiency right away, and get a faster softwaredevelopment lifecycle earlier.

First ensure you are familiar with GitLab CI/CD fundamentalsand understand the quick start guide.

Identify bottlenecks and common failures

The easiest indicators to check for inefficient pipelines are the runtimes of the jobs,stages, and the total runtime of the pipeline itself. The total pipeline duration isheavily influenced by the:

  • Size of the repository
  • Total number of stages and jobs.
  • Dependencies between jobs.
  • The “critical path”, which representsthe minimum and maximum pipeline duration.

Additional points to pay attention relate to GitLab Runners:

  • Availability of the runners and the resources they are provisioned with.
  • Build dependencies, their installation time, and storage space requirements.
  • Container image size.
  • Network latency and slow connections.

Pipelines frequently failing unnecessarily also causes slowdowns in the developmentlifecycle. You should look for problematic patterns with failed jobs:

  • Flaky unit tests which fail randomly, or produce unreliable test results.
  • Test coverage drops and code quality correlated to that behavior.
  • Failures that can be safely ignored, but that halt the pipeline instead.
  • Tests that fail at the end of a long pipeline, but could be in an earlier stage,causing delayed feedback.

Pipeline analysis

Analyze the performance of your pipeline to find ways to improve efficiency. Analysiscan help identify possible blockers in the CI/CD infrastructure. This includes analyzing:

  • Job workloads.
  • Bottlenecks in the execution times.
  • The overall pipeline architecture.

It’s important to understand and document the pipeline workflows, and discuss possibleactions and changes. Refactoring pipelines may need careful interaction between teamsin the DevSecOps lifecycle.

Pipeline analysis can help identify issues with cost efficiency. For example, runnershosted with a paid cloud service may be provisioned with:

  • More resources than needed for CI/CD pipelines, wasting money.
  • Not enough resources, causing slow runtimes and wasting time.

Pipeline Insights

The Pipeline success and duration chartsgive information about pipeline runtime and failed job counts.

Tests like unit tests, integration tests, end-to-end tests,code quality tests, and othersensure that problems are automatically found by the CI/CD pipeline. There could be manypipeline stages involved causing long runtimes.

You can improve runtimes by running jobs that test different things in parallel, inthe same stage, reducing overall runtime. The downside is that you need more runnersrunning simultaneously to support the parallel jobs.

The testing levels for GitLabprovide an example of a complex testing strategy with many components involved.

Directed Acyclic Graphs (DAG) visualization

The Directed Acyclic Graph (DAG) visualization can help analyze the critical path inthe pipeline and understand possible blockers.

Pipeline Monitoring

Global pipeline health is a key indicator to monitor along with job and pipeline duration.CI/CD analytics give a visualrepresentation of pipeline health.

Instance administrators have access to additional performance metrics and self-monitoring.

You can fetch specific pipeline health metrics from the API.External monitoring tools can poll the API and verify pipeline health or collectmetrics for long term SLA analytics.

For example, the GitLab CI Pipelines Exporterfor Prometheus fetches metrics from the API and pipeline events. It can check branches in projects automaticallyand get the pipeline status and duration. In combination with a Grafana dashboard,this helps build an actionable view for your operations team. Metric graphs can alsobe embedded into incidents making problem resolving easier. Additionally, it can also export metrics about jobs and environments.

If you use the GitLab CI Pipelines Exporter, you should start with the example configuration.

Alternatively, you can use a monitoring tool that can execute scripts, likecheck_gitlab for example.

Runner monitoring

You can also monitor CI runners ontheir host systems, or in clusters like Kubernetes. This includes checking:

  • Disk and disk IO
  • CPU usage
  • Memory
  • Runner process resources

The Prometheus Node Exportercan monitor runners on Linux hosts, and kube-state-metricsruns in a Kubernetes cluster.

You can also test GitLab Runner auto-scalingwith cloud providers, and define offline times to reduce costs.

Dashboards and incident management

Use your existing monitoring tools and dashboards to integrate CI/CD pipeline monitoring,or build them from scratch. Ensure that the runtime data is actionable and usefulin teams, and operations/SREs are able to identify problems early enough.Incident management can help here too,with embedded metric charts and all valuable details to analyze the problem.

Storage usage

Review the storage use of the following to help analyze costs and efficiency:

  • Job artifacts and their expire_inconfiguration. If kept for too long, storage usage grows and could slow pipelines down.
  • Container registry usage.
  • Package registry usage.

Pipeline configuration

Make careful choices when configuring pipelines to speed up pipelines and reduceresource usage. This includes making use of GitLab CI/CD’s built-in features thatmake pipelines run faster and more efficiently.

Reduce how often jobs run

Try to find which jobs don’t need to run in all situations, and use pipeline configurationto stop them from running:

  • Use the interruptible keyword to stop old pipelineswhen they are superseded by a newer pipeline.
  • Use rules to skip tests that aren’t needed. For example,skip backend tests when only the frontend code is changed.
  • Run non-essential scheduled pipelines less frequently.

Fail fast

Ensure that errors are detected early in the CI/CD pipeline. A job that takes a very longtime to complete keeps a pipeline from returning a failed status until the job completes.

Design pipelines so that jobs that can fail fastrun earlier. For example, add an early stage and move the syntax, style linting,Git commit message verification, and similar jobs in there.

Decide if it’s important for long jobs to run early, before fast feedback fromfaster jobs. The initial failures may make it clear that the rest of the pipelineshouldn’t run, saving pipeline resources.

Directed Acyclic Graphs (DAG)

In a basic configuration, jobs always wait for all other jobs in earlier stages to completebefore running. This is the simplest configuration, but it’s also the slowest in mostcases. Directed Acyclic Graphs andparent/child pipelines are more flexible and canbe more efficient, but can also make pipelines harder to understand and analyze.

Caching

Another optimization method is to cache dependencies. If yourdependencies change rarely, like NodeJS /node_modules,caching can make pipeline execution much faster.

You can use cache:when to cache downloaded dependencieseven when a job fails.

Docker Images

Downloading and initializing Docker images can be a large part of the overall runtimeof jobs.

If a Docker image is slowing down job execution, analyze the base image size and networkconnection to the registry. If GitLab is running in the cloud, look for a cloud containerregistry offered by the vendor. In addition to that, you can make use of theGitLab container registry which can be accessedby the GitLab instance faster than other registries.

Optimize Docker images

Build optimized Docker images because large Docker images use up a lot of space andtake a long time to download with slower connection speeds. If possible, avoid usingone large image for all jobs. Use multiple smaller images, each for a specific task,that download and run faster.

Try to use custom Docker images with the software pre-installed. It’s usually muchfaster to download a larger pre-configured image than to use a common image and installsoftware on it each time. The Docker Best practices for writing Dockerfiles articlehas more information about building efficient Docker images.

Methods to reduce Docker image size:

  • Use a small base image, for example debian-slim.
  • Do not install convenience tools such as vim or curl if they aren’t strictly needed.
  • Create a dedicated development image.
  • Disable man pages and documentation installed by packages to save space.
  • Reduce the RUN layers and combine software installation steps.
  • Use multi-stage buildsto merge multiple Dockerfiles that use the builder pattern into one Dockerfile, which can reduce image size.
  • If using apt, add --no-install-recommends to avoid unnecessary packages.
  • Clean up caches and files that are no longer needed at the end. For examplerm -rf /var/lib/apt/lists/* for Debian and Ubuntu, or yum clean all for RHEL and CentOS.
  • Use tools like dive or DockerSlimto analyze and shrink images.

To simplify Docker image management, you can create a dedicated group for managingDocker images and test, build and publish them with CI/CD pipelines.

Test, document, and learn

Improving pipelines is an iterative process. Make small changes, monitor the effect,then iterate again. Many small improvements can add up to a large increase in pipelineefficiency.

It can help to document the pipeline design and architecture. You can do this withMermaid charts in Markdown directly in the GitLabrepository.

Document CI/CD pipeline problems and incidents in issues, including research doneand solutions found. This helps onboarding new team members, and also helpsidentify recurring problems with CI pipeline efficiency.

Related topics

Pipeline efficiency | GitLab (2024)
Top Articles
Latest Posts
Article information

Author: Neely Ledner

Last Updated:

Views: 5574

Rating: 4.1 / 5 (62 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Neely Ledner

Birthday: 1998-06-09

Address: 443 Barrows Terrace, New Jodyberg, CO 57462-5329

Phone: +2433516856029

Job: Central Legal Facilitator

Hobby: Backpacking, Jogging, Magic, Driving, Macrame, Embroidery, Foraging

Introduction: My name is Neely Ledner, I am a bright, determined, beautiful, adventurous, adventurous, spotless, calm person who loves writing and wants to share my knowledge and understanding with you.